Complexity Hierarchies and Higher-order Cons-free Term Rewriting
نویسندگان
چکیده
Constructor rewriting systems are said to be cons-free if, roughly, constructor terms in the right-hand sides of rules are subterms of the left-hand sides; the computational intuition is that rules cannot build new data structures. In programming language research, cons-free languages have been used to characterize hierarchies of computational complexity classes; in term rewriting, cons-free first-order TRSs have been used to characterize P. We investigate cons-free higher-order term rewriting systems, the complexity classes they characterize, and how these depend on the type order of the systems. We prove that, for every K ≥ 1, left-linear cons-free systems with type order K characterize ETIME if unrestricted evaluation is used (i.e., the system does not have a fixed reduction strategy). The main difference with prior work in implicit complexity is that (i) our results hold for non-orthogonal TRSs with no assumptions on reduction strategy, (ii) we consequently obtain much larger classes for each type order (ETIME versus EXPK−1TIME), and (iii) results for cons-free term rewriting systems have previously only been obtained for K = 1, and with additional syntactic restrictions besides cons-freeness and left-linearity. Our results are among the first implicit characterizations of the hierarchy E = ETIME ( ETIME ( · · · . Our work confirms prior results that having full non-determinism (via overlapping rules) does not directly allow for characterization of non-deterministic complexity classes like NE. We also show that non-determinism makes the classes characterized highly sensitive to minor syntactic changes like admitting product types or non-left-linear rules.
منابع مشابه
Complexity Hierarchies and Higher-Order Cons-Free Rewriting
Constructor rewriting systems are said to be cons-free if, roughly, constructor terms in the righthand sides of rules are subterms of constructor terms in the left-hand side; the computational intuition is that rules cannot build new data structures. It is well-known that cons-free programming languages can be used to characterize computational complexity classes, and that cons-free first-order...
متن کاملOn First-order Cons-free Term Rewriting and PTIME
In this paper, we prove that (first-order) cons-free term rewriting with a call-by-value reduction strategy exactly characterises the class of PTIME-computable functions. We use this to give an alternative proof of the result by Carvalho and Simonsen which states that cons-free term rewriting with linearity constraints characterises this class.
متن کاملHigher-order Cons-free Interpreters
Constructor rewriting systems are said to be cons-free if any constructor term occurring in the rhs of a rule must be a subterm of the lhs of the rule. Roughly, such systems cannot build new data structures during their evaluation. In earlier work by several authors, (typed) cons-free systems have been used to characterise complexity classes such as polynomial or exponential time or space by va...
متن کاملAn Implicit Characterization of the Polynomial-Time Decidable Sets by Cons-Free Rewriting
We define the class of constrained cons-free rewriting systems and show that this class characterizes P , the set of languages decidable in polynomial time on a deterministic Turing machine. The main novelty of the characterization is that it allows very liberal properties of term rewriting, in particular non-deterministic evaluation: no reduction strategy is enforced, and systems are allowed t...
متن کاملFree Variables and Subexpressions in Higher-Order Meta Logic
This paper addresses the problem of how to represent free variables and subexpressions involving-bindings. The aim is to apply what is known as higher-order abstract syntax to higher-order term rewriting systems. Directly applying-reduction for the purpose of subterm-replacement is incompatible with the requirements of term-rewriting. A new meta-level representation of subterms is developed tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Logical Methods in Computer Science
دوره 13 شماره
صفحات -
تاریخ انتشار 2017